您当前的位置:首页 > 中心成员
姓名:高学杰(Gao, Xuejie)
职 称:研究员(二级)/ Senior research scientist (L2)
研究方向: 区域气候变化和区域气候模式 / Regional climate change and Regional climate modelling
邮箱:gaoxuejie@mail.iap.ac.cn
教育:
气象学博士,中国科学院大气物理研究所,2000年4月
理学硕士, 中国气象科学研究院,1989年5月
理学学士, 北京大学地球物理系气象学专业,1986年7月
工作经历:
2014–今: 中国科学院大气物理研究所,研究员
1995–2014:中国气象局国家气候中心,历任副研究员、研究员
1993–1995:中国南极中山科学考察站,气象学考察队员
1991–1993:中国气象科学研究院,助理研究员
1989–1991:中国气象局办公室,秘书
1999–今: 国际理论物理中心(Abdus Salam International Centre for Theoretical Physics, ICTP,Trieste, Italy)不定期访问学者(每年数周至数月不等)
主要研究工作和成绩:
长期从事于区域气候变化和动力降尺度模拟和预估研究,在使用高分辨率区域气候模式进行中国等区域气候模拟及气候变化预估方面取得较突出成果。曾获中国科学技术协会颁发“第五届全国优秀科技工作者”称号(2012年)、2014年度国家自然科学二等奖(第五完成人)、及2017年度中国气象学会气象科学技术进步成果奖一等奖(第六完成人)。在相关领域发表学术论文一百余篇,截止至2024年7月,英文期刊论文的SCI总引用近7,600余次,第一或通讯作者论文中单篇SCI引用百次以上的有15篇,其中5篇在200次以上,最高一篇近千次(https://webofscience.clarivate.cn/wos/author/record/877374/);谷歌学术(Google Scholar)所统计的论文引用超33,000次。
近年参与的国内外学术组织和活动:
– IPCC 全球增暖1.5°C特别报告编审(Review Editor, 2017–2018)
– IPCC第5次评估报告主要作者(Lead Author, 2010–2013)
– IPCC第4次评估报告主要作者(Lead Author, 2004–2007)
– IPCC TGICA工作组成员(2004–2008)
– 中国气象学会多专业委员会的副主任委员和委员
– “Advances in Atmospheric Sciences”、“大气科学”和“Atmospheric and Oceanic Science Letters”等期刊编委会成员
Education:
Ph.D. Meteorology, Institute of AtmosphericPhysics,ChinaAcademyofScience, April 2000
M.S. Meteorology,ChineseAcademyof Meteorological Sciences, May 1989
B. S. Meteorology,Peking University,China, July 1986
Employment:
2014–present: Senior Research Scientist / Professor, InstituteofAtmospheric Sciences, China Academy of Science, China
2004–2014: Chief Research Scientist, National Climate Center,ChinaMeteorological Administration (NCC/CMA)
1996–2004: Research Scientist, NCC/CMA, China
1995–1996: Junior Research Scientist, NCC/CMA, China
1993–1995: Expedition member / Interpreter, China Zhongshan Station,Antarctica
1991–1993: Junior Research Scientist, ChineseAcademyof Meteorological Sciences, CMA
1989–1991: Assistant to the deputy administrator on science and research, General Office, CMA
1999–present: Visiting Scientist (from a few weeks to 8 months per year), Abdus Salam International Centre for Theoretical Physics (ICTP),Trieste,Italy
Achievements and Awards:
Extensive experiences in regional climate modeling and climate change studies over East Asia and other regions. One of the leading scientists in regional climate modeling and climate change studies. Awarded by China Association for Science and Technology (December, 2012) as one of the Fifth Outstanding Science and Technology Workers of China, and Received the Meteorological Science and Technology Progress Achievement Award of the Chinese Meteorological Society (2017, First Class, one of the six members). Over 100 publications in the peer-reviewed scientific journals and frequently cited, with more than 5,300 citations listed in the Web of Science with 10 and 4 cited more than 100 and 200, respectively (https://publons.com/researcher/2669196/xuejie-gao/publications/). Total citation in Google Scholar is more than 27,000.
Membership:
– Review Editor of the IPCC Special Report on Global Warming of 1.5°C, 2017–2018
– Lead Author of the IPCC Fifth Assessment Report (AR5), 2010–2013
– Lead Author of the IPCC Fourth Assessment Report (AR4), 2004–2007
– Member of the IPCC Task Group on Data & Scenario Support for Impact and Climate Analysis (TGICA), 2004–2008
– The State Award for Natural Sciences of China 2014, Second Class (one of the five members)
– The fifth Outstanding Science and Technology Workers of China, awarded by China Association for Science and Technology (December, 2012)
– Editor, Advances in Atmospheric Sciences, Chinese Science Bulletin, Chinese Journal of Atmospheric Sciences (in Chinese), and Atmospheric and Oceanic Science Letters
近期发表的主要研究论文 Selected latest publications:
1. Wu J, Gao XJ, Shi Y, Giorgi F, 2021. Projection of the future changes in tropical cyclones activity over the Western North Pacific based on multi-RegCM4 simulations. Advances in Atmospheric Sciences. doi:10.1007/s00376-021-0286-9.
2. Tong Y, Gao XJ, Han ZY, Xu Y, Xu Y, Giorgi F, 2020. Bias correction of temperature and precipitation over China from a series of RCM simulations using QM and QDM methods. Climate Dynamics. doi:10.1007/s00382-020-05447-4.
3. Gao XJ, Wu J, Shi Y, Wu Jia, Han ZhY, Zhang DF, Tong Y, Li RK, Xu Y and Giorgi F, 2018. Future changes of thermal comfort conditions over China based on multi-RegCM4 simulations. Atmospheric and Oceanic Science Letters, 11(4), 291–299. doi: 10.1080/ 16742834.2018.1471578.
4. Xu Y, Gao XJ, Giorgi F, Zhou BT, Shi Y, Wu J, Zhang YX, 2018. Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Advances in Atmospheric Science, 35, 376–388. doi:10.1007/s00376-017-6269-1.
5. Gao XJ, Shi Y, Han ZY, Wang ML, Wu J, Zhang DF, Xu Y, Giorgi F, 2017. Performance of RegCM4 over major river basins in China. Advances in Atmospheric Sciences, 34(4), 441–455. doi: 10.1007/s00376-016-6179-7.
6. Gao XJ, Shi Y, Giorgi F, 2016. Comparison of convective parameterizations in RegCM4 experiments with CLM as the land surface model over China. Atmospheric and Oceanic Science Letters, 9, 246–254. doi: 10.1080/16742834.2016.1172938.
7. Xu Y, Gao XJ, Shi Y, Zhou BT, 2015. Detection and attribution analysis of annual mean temperature changes in China. Climate Research, 63, 61–71. doi:10.3354/cr01283.
8. 吴佳, 高学杰, 2013. 一套格点化的中国区域逐日观测资料及与其他资料的对比. 地球物理学报, 56(4), 1102–1111. doi:10.6038/cjg20130406. // Wu J, Gao XJ, 2013. A gridded daily observation dataset over Chinaregion and comparison with the other datasets. Chinese Journal of Geophysics, 56(4), 1102–1111 (in Chinese). doi:10.6038/cjg20130406.
9. Gao XJ, Shi Y, Zhang DF, Wu J, Giorgi F, Ji ZM, Wang YG, 2012. Uncertainties of monsoon precipitation projection over China: Results from two high resolution RCM simulations. Climate Research. 52, 213–226
10. 高学杰, 石英, 张冬峰, Giorgi F. 2012. RegCM3对21世纪中国区域气候变化的高分辨率模拟. 科学通报, 57(5), 374–381. // Gao XJ, Shi Y, Zhang DF, Giorgi F, 2012. Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chinese Science Bulletin, 57(10), 1188–1195. doi: 10.1007/s11434-011-4935-8.